Schedule

09:00 – 9:05 Opening Remarks


09:05 -10:20 | Session I: De-novo Drug Design

  • 09:55 – 10:05 Mahule Roy, Subhas Roy: Co-Diffuse: Generative Co-Design of Protein–Ligand Interactions via 3D Equivariant Diffusion Models with Induced-Fit Awareness
  • 10:05 – 10:15 Alessandro Luongo, Konstantina Koteva, El Amine Cherrat, Enrico Petretto, Alexander Rodin Quantum-Enhanced Generative AI Pipeline for Molecular Design

10:15 – 10:40  Coffee/Tea Break


10:40 – 12:00 | Session II: Active Learning

  • 11:40 – 11:50 Samarth Kadaba, Connor C. Call, Alexander E. Vlahos, Hank Jones, Xiaojing J Gao SMPO: Score-Matching Preference Optimization for Protein Fitness Modeling
  • 11:50 – 12:00 Mehyar Mlaweh, Tristan Cazenave, Ines Alaya BeeRNA: tertiary structure-based RNA inverse folding using Artificial Bee Colony

12:00 – 13:30  Lunch


13:30 – 14:50 | Session III: Multi-Modal Learning:

  • 14:30 – 14:40 Le Huy Khiem, Sreejata Dey, Marcos Martínez Galindo, Vanessa Lopez, Ting Hua, Nitesh V Chawla, Hoang Thanh Lam Towards Generalist Large Language Models for Molecular Property Prediction: Distilling Knowledge from Specialist Models
  • 14:40 – 14:50 Ahmed A. A. Elhag, Arun Raja, Alex Morehead, Samuel M Blau, Garrett M Morris, Michael M. Bronstein Learning Inter-Atomic Potentials without Explicit Equivariance

14:50 – 15:10  Coffee/Tea Break


15:10 – 16:30 | Session IV: Causal AI

  • 16:10 – 16:20 David Scott Lewis, Enrique Zueco Agentic Causal Graph Learning for Drug Target Discovery: A Self-Directed AI System at STRING Scale
  • 16:20 – 16:30 Crystal Su MedRule-KG: A Knowledge-Graph–Steered Scaffold for Reliable Mathematical and Biomedical Reasoning

16:30 – 17:30  Poster Session 


17:30 – 18:00  Panel Discussion